The Top Five Challenges of IoT


IoT deployment is diversifying from consumer-based applications such as smart home devices and wearables to mission-critical applications in the areas of public safety, emergency response, industrial automation, autonomous vehicles and the Internet of Medical Things (IoMT).

As these mission-critical applications proliferate, engineers and designers must address important design and test considerations and tradeoffs from early design phase to manufacturing outcomes.

Addressing technical challenges through the 5Cs of IoT

The top five challenges of designing for IoT, the ‘5C’s of IoT’, are Connectivity, Continuity, Compliance, Coexistence and Cybersecurity.

Connectivity: Enabling a seamless flow of information to and from a device, infrastructure, cloud and applications, is a top IoT challenge because wireless connectivity is highly complex, and dense device deployments further complicate operations. Yet, mission critical IoT devices are expected to work reliably without fail even in the toughest environments. Fast-evolving wireless standards add to the complexity, and engineers face constant challenges in keeping pace with the latest technologies while ensuring devices can work seamlessly throughout the ecosystem.

Responding to connectivity challenges requires design and test solutions that are highly flexible and configurable, and upgradable to meet future needs.  Flexibility is needed to test devices with many radio formats, to assess device performance under actual operation modes, and to support over-the-air (OTA) testing in signaling mode without the need for a chipset-specific driver. The solution should be simple, inexpensive, and able to be used in both R&D and manufacturing to leverage code and minimize measurement correlation issues across the different phases of development.

Continuity: Ensuring and extending battery life, one of the most important considerations for IoT devices. A long battery life is a huge competitive advantage in consumer IoT devices. For industrial IoT devices, a battery life of five or ten years is the common expectation. For medical devices such as pacemakers, device life can mean the difference between life and death. And of course, battery failure is not an option.

To meet IoT battery life requirements, integrated circuit (IC) designers need to design ICs with deep sleep modes that consume very little current and reduce clock speed and instruction sets, as well as implement on low battery voltages. For wireless communications, standards groups are defining new low power consumption operating modes such as NB-IoT, LTE-M, LoRa, Sigfox that offer limited active operation time while maintaining low power consumption. Designers who integrate sensing, processing, control and communication components into a final product, must know how the peripherals behave and consume power, and optimize the product’s firmware and software to simplify operation and reduce consumption.

Compliance:  IoT devices must adhere to radio standards and global regulatory requirements. Compliance testing includes radio standards conformance and carrier acceptance tests, and regulatory compliance tests such as RF, EMC, and SAR tests. Design engineers often scramble to meet tight product introduction timeline and ensure smooth global market entry while complying with the latest regulations – which are frequently updated

Because compliance testing is complex and time-consuming, it can take days or weeks to complete if performed manually. To keep to a product release schedule, designers can consider investing in inhouse pre-compliance test solutions they can use at every design stage, to fix issues early. Choosing one that is adapted from the test lab compliance system can also help to ensure measurement correlation and reduce risk of failures.


With billions of devices, congestion in the radio channels is a problem that will only get worse. To address wireless congestion, standards bodies have developed test methodologies to evaluate device operations in the presence of other signals. For instance, in Bluetooth, adaptive frequency hopping (AFH) lets a Bluetooth device drop channels that experience high data collisions. Other collision avoidance techniques such as listen before talk (LBT) and cooperative collision avoidance (CCA) also improve transmission effectiveness. But effectiveness in a mixed-signal environment is unknown, and when the radio formats don’t detect each other, collisions and data losses will occur.

An industrial sensor that loses the control signal, or a medical infusion pump that stops working due to surrounding interference, can have dire consequences. Coexistence testing is therefore crucial, to measure and assess how a device will operate in a crowded, mixed signal environment, and to assess the potential risk in maintaining wireless performance in the presence of unintended signals found in the same operating environment.

Cybersecurity: Most traditional cybersecurity protection tools have focused on network and cloud. Endpoint and over-the-air (OTA) vulnerabilities are frequently overlooked. While mature technologies like Bluetooth and WLAN are used in many applications, little has been done to address the OTA vulnerabilities. The complexity of these wireless protocols translates into potential unknown pitfalls in device radio implementations that could allow hackers to access or take control of a device.

According to IDC, 70 percent of security breaches originate from endpoints. Extra care should be taken to safeguard these IoT devices. OTA vulnerabilities and potential point of entries into endpoint devices should be identified, and devices should be tested using a regularly updated database of known threats/attacks to monitor device response and detect anomalies.

Building A Strong Foundation Through the 5Cs of IoT

IoT opens doors to exciting new applications and opportunities for many industries. But it also brings unprecedented challenges that require thinking in new ways to meet mission-critical requirements. Delivering successful IoT means overcoming IoT’s 5Cs technical challenges.  Having a deep understanding of these challenges and knowing what the key design and test considerations are, will build a strong foundation for implementation and deployment across the ecosystem. Use of the right design, validation, compliance testing, manufacturing and security tools throughout the product lifecycle will help to ensure that IoT delivers on its promises.

For more info about the 5Cs of IoT, please visit

About the author: Sook Hua Wong is an industry segment manager with Keysight Technologies based in Penang, Malaysia. She manages the solution road map, runs marketing programs, and drives growth in the Internet of Things (IoT) segment at Keysight Technologies. Prior to this role, she was the product planner responsible for strategic planning and product portfolio development for RF/microwave power meters and sensors.

Edited by Ken Briodagh
Get stories like this delivered straight to your inbox. [Free eNews Subscription]

Related Articles

Today's Technology Do-Gooders: FlySense Vaping and Bullying Sensor from Soter Technologies

By: Alex Passett    6/5/2023

FlySense 286 from Soter Technologies addresses educational environments' needs to keep students safer when it comes to instances of on-campus vaping a…

Read More

From Semtech and Connected Development, the XCVR Development Board and Reference Design for IoT

By: Alex Passett    6/2/2023

Based on Semtech's LoRa SX126x Series, the XCVR Development Board and Reference Design simplifies design processes and reduces time-to-market for IoT …

Read More

At the KORE of Sustainability: Actioning Environmental Improvements in IoT

By: Alex Passett    6/1/2023

For KORE, smaller packaging means a decrease in plastic carbon emissions. This is just one measure KORE is taking to improve sustainability measures i…

Read More

ESG in IoT: Semtech Furthers Commitments to Global Sustainability

By: Alex Passett    6/1/2023

Semtech recently released its inaugural Corporate Sustainability report, detailing its operational impacts and how they affect sustainably supply chai…

Read More

Laird Connectivity Sensors and Iridium Edge Solar: A Partnership for Asset Ecosystems in IoT

By: Alex Passett    5/30/2023

Iridium Communications and Laird Connectivity are integrating respective technologies to enable longer-term IoT asset tracking, monitoring and managem…

Read More