Menu

IoT FEATURE NEWS

IoT Tech Goes to Space with NASA

By

The IoT is taking over the world, but it can no longer be satisfied with mere terran domination. In a recent announcement, M2M developer Digi International will aid the IoT’s mission and send it into space to begin colonizing the stars.

NASA will use Digi International’s XBee ZigBee modules as part of a program to determine potential applications of wireless technologies in space. The launch is scheduled to take place from NASA’s Wallops Flight Facility in Virginia on July 7.

The NASA Sounding Rocket Program provides opportunities for suborbital flight through the Flight Opportunities Program for early flight evaluation of promising technology. The flight plan calls for the Sub-Orbital Aerodynamic Re-entry Experiments (SOAREX) payload to be delivered by a suborbital rocket to about 250 miles above the Earth. This will test new “Exo-Brake” technology, which is a specially-designed braking device that operates similar to a parachute at extremely high speeds and low air pressures. This is a new de-orbit technique, and is being considered a possible solution for returning cargo from the International Space Station (ISS), orbiting platforms or as a possible landing mechanism in low-density atmospheres. Like on Mars, for instance.

Image via Shutterstock

As part of a five-node network, XBee ZigBee will be used to monitor Exo-Brake performance data that encompass 3-axis acceleration parameters, in addition to temperature and air pressure. Payload avionics will relay the XBee data to ground control via an Iridium satellite. The XBee modules will be used to create the wireless sensor data network for the Exo-Brake and then transfer the data to the Iridium uplink.

Typically, sensor devices collecting atmospheric readings are connected with wiring, but as part of a “wireless-in-space” effort conducted by the NASA Engineering and Safety Center, NASA is determining if it can augment traditional wiring with wireless networking. A wireless environment could present numerous advantages, including creating vehicles and devices with less weight due to fewer cables needed, resulting in a lower fuel requirement or greater payload capacity.

“Wireless sensor technology allows measuring important parameters such as aerodynamic pressure and temperature at the apex of the Exo-Brake during re-entry,” said Rick Alena, computer engineer, NASA Ames. “It is very difficult to instrument a deployable parachute like the Exo-Brake, and wireless sensor modules provide the means for this type of measurement where it is difficult to run wires.”

Rise of the machines, indeed. 

 
Get stories like this delivered straight to your inbox. [Free eNews Subscription]
SHARE THIS ARTICLE
Related Articles

Slicing Up the Network with 5G SA: An Interview with Telit Cinterion's Stan Gray

By: Carl Ford    6/10/2025

Carl Ford speaks with Stan Gray about 5G SA, network slicing, and trends, challenges, and opportunities related to both.

Read More

Cisco Introduces Agentic AI to Industrial AIoT

By: Carl Ford    6/10/2025

The goal at Cisco is to make management of systems easier, particularly for OT, with a focus on operational issues and not on the networks connecting …

Read More

CiscoLive and Well in 2025

By: Carl Ford    6/10/2025

Cisco's new AI infrastructure innovations aim to simplify, secure, and future-proof data centers for the AI era, whether they are on-premises or a hyp…

Read More

What are the Hyperscalers' Goals Working the Power Play with Telcos?

By: Carl Ford    6/6/2025

Are telcos in prime position to support hyperscalers as AI drives up energy and compute needs?

Read More

Meta Goes Nuclear with Constellation Energy.

By: Carl Ford    6/5/2025

Meta will be powering its AI data centers with nuclear power from Constellation Energy's plant in Illinois.

Read More